SANDIA REPORT

SAND2007-xxx
Unlimited Release
Printed ??? 2007

A Linear Algebra Interpretation of

Non-Euclidean Scalar Products and

Vector Spaces and their impact on
Numerical Algorithms

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2007-xxx
Unlimited Release
Printed ??? 2007

A Linear Algebra Interpretation of Non-Euclidean Scalar
Products and Vector Spaces and their impact on
Numerical Algorithms

Roscoe A. Bartlett
Optimization/Uncertainty Estim

Sandia National Laboratori¢g\lbuquerque NM 87185 USA,

Abstract

Many numerical algorithms are derived, analyzed and esprkwith respect to Euclidean
vector spaces. However, many applied mathematicians Hewensthe utility of explessing
and implementing many different types of numerical aldomis with respect to non-Eucliean
vector spaces. Coming from a functional analysis backgtpitinatural to express many types
of numerical algorithms in non-Eucliean form by introdugithe notion of an scalar (or in-
ner) product. The introduction of a non-Eucliean vectorcgpan scalar product fundamentally
changes the meaning of linear operators and other corsitanimonly used the express nu-
merical algorithms. The purpose of this paper is to provideumdation for understanding
the meaning and implications of expressing numerical élgos in non-Eucliean form. This
discussion requires no background in functional analysisia based purely on basic finite-
dimensional linear algebra. The goal is to provide the readth a level of confidence in
expressing numerical algorithms in non-Eucliean form. e procedure is presented for
taking any numerical algorithm expressed using Euclidesgtor spaces and translating it to
non-Euclidean form in the most general way possible. Examahd analysis of the issues in-
volved are demonstrated for different types of numeriogbathms such as Newton methods,
guasi-Newton methods, optimization globalization metaahd inequality constraints. The
goal of this paper is not to make everyone who writes numkeaigarithms become experts in
functional analysis. Instead, the goal is to empower narttional-analysis experts with the
ability to write numerical software with enoguh hooks tmailapplication domain experts with
knowledge of the (infinite dimensional) structure of thelgeon to customize the algorithms in
an efficient and practical way.

*Sandia is a multiprogram laboratory operated by Sandia@atjpn, a Lockheed-Martin Company, for the United
States Department of Energy under Contract DE-AC04-94R085

3

Acknowledgment

The authors would like to thank ...

The format of this report is based on information foundih [

Contents

1 Introduction to vector spaces, basis representatioatgrgoroducts, and natural norms. ..

1.1 Basis and coefficient representations of vectors anmispaces
1.2 Standardectoroperations.t e e e
1.3 Square, invertible basis representations . . e

1.4 Definition of the scalar (or inner) product for a vectomsp
1.5 Definition of the natural norm for a vector spaceo ..
1.6 Orthonormal and orthogonal basis representationsot n L.
1.7 Equivalence of basis representations and the scaldugtro
1.8 Linear OperatOrSo ittt e

1.9 Dealing only with scalar products and vector coeffigentalgorithm construction .

2 Impact of non-Euclidean scalar products on matrix repr@sens of linear operators. . . .

2.1 The “natural” matrix representation of a linearoperato.
2.2 The “Euclidean” matrix representation of alinearopmra
3 Impact of non-Euclidean scalar products on derivativeasgntations
3.1 Derivatives of multi-variable scalar functions
3.2 Derivatives of multi-variable vector functions
4 Impact of non-Euclidean scalar products on various nuwakailgorithms
4.1 Newton methods
4.2 Minimization, merit functions and globalization mediso
4.3 Least-squares merit functions i mmmm it
4.4 Variable metric quasi-Newton methods
4.5 Inequality CONSHraiNtSttt e e e e
5 Vector Coefficient Forms of Numerical Algorithms
6 Summary
T TOD0 . e
References

Appendix

13

Figures

Many numerical algorithms are written in terms of Euclideaitor spaces where dot products
are used for the scalar inner product. For example, the iloogr of a linear conjugate gradient
(CG) methodk = 0... for solving Ax = b, initialized usingr = ro = b— AX, is often written in
Euclidean (or dot-product) form as

H

pk = 1T,
Pk
= r+— X
P Pk—lp
q = Ap
Pk
o0 = —,
pq
X = X+ap,
r = r—aq.

An experienced mathematician will look at the above algamitan immediately write down the
generalized form by replacing the dot products and p™ q with the scalar products: r,r > and
< p,q> and restate the inner loop of the above CG algorithm as

Pk = <nr>,
Pk

= r+— X

P Pk—lp

qa = Ap

@ P

<p,q>
X = X+dap,
r = r—aq.

Just as with linear CG, many numerical algorithms expressédiclidean form with dot prod-
ucts and Euclidean nornfis||2 (such as various optimization algorithms, stability asaynethods,
time integration methods, etc.) have straightforwardresitss to non-Euclidean vectors and vector
spaces. What we would like is to have a straightforward m®d®y which we can analyze many
different types of existing numerical algorithms expresseEuclidean form and then write out, if
possible, the more general non-Euclidean form of theseithgus. We also want to do this in such
a way that we do not have to revisit all of the mathematicalimggions and theorems that went
into the development of the algorithm.

One might ask the following questions. What's the big deaéplacing dot products with scalar
products? What is this scalar product,. > and what does this mean? What is the relationship
between vectorp andq for algorithms stated in Euclidean form and in non-Euclidéarm? By
what justification can one just replace dot products [iKey with scalar productsc p,q >? What
other changes do we need to make due to this subtle changpla¢irey dot products with scalar
products? How is the definition of linear operators and otigects affected by the introduction
of non-Euclidean scalar products? What does all of this my?yHere we seek to answer all of
these questions in a way that a person without knowledgenattifanal analysis or other advanced
mathematics can understand and appreciate. All that wenasisithat the reader has a basic under-
standing of linear algebra and a familiarity with multi-\zdoie numerical algorithms like Newton'’s
method [??7?] for nonlinear equations.

Here we present a linear algebra interpretation of finiteetisional non-Euclidean inner prod-
uct spaces and how they influence numerical algorithms gplicapions. The goal of this treatment
is to present this topic in a way that non-mathematiciansuratferstand and appreciate. The ba-
sic approach will be to show the relationship between tyfaeclidean-based vectors and vector
spaces (i.e. where the dot product is used for the inner ptaihd a linear operator is equivalent to
a matrix) and non-Euclidean basis representations, \&aod vector spaces (i.e. where the inner
product is defined by a positive-definite matrix and a lingaarator is not necessarily equivalent to
a matrix). What we will show is a straightforward way to takany different types of numerical
algorithms that are expressed in Euclidean form and thenalyze them for non-Euclidean vectors
and spaces and see if they can be transformed for use witltnclidean spaces. What we will
show is that the expression of a numerical algorithm in aBoalidean space is essentially equiv-
alent to performing a linear transformation of variabled amodel functions except that we do not
need to actually perform the transformation at the modellieich has many different advantages.

1 Introduction to vector spaces, basis representations, alar
products, and natural norms

In this section, we provide a quick overview of the conceptfinite-dimensional vector spaces,
vector basis and coefficient representations, scalar ptedand norms. The mathematical system
described here is that of finite-dimensional Hilbert spd@&®]. Here we show straightforward
connections between Euclidean and non-Euclidean repedsrs of vectors. In this introductory
material, we deal with general vectors in a complex sglt@ith complex scalar elements.

1.1 Basis and coefficient representations of vectors and vec spaces

Consider a complex-valued vector space C" with the basis vectorg € €™, fori =1...m, such
that any vectox € C" can be represented as the linear combination

x— iim (1)

whereX'e § is known as theoefficient vectofor x in the spaces. In order for the set of vectors
{g} to form a valid basis, they must minimally be linearly indegent andn < n must be true. In
a finite dimensional setting, when we say that some vectorssine spacg what we mean is that
it can be composed out of a linear combination of the spa@sstvectors as shown in (1).

Another way to represent (1) is in the matrix form
x = EX (2

whereE € €™M is called theBasis Matrixwho’s columns are the basis vectors for the spfice
other words

E=[e & ... en]. (3

The basis matrix form (2) will allow us to use standard linaekyebra notation later in various
types of derivations and manipulations.

The choice of which of the two different representations wéetorx or X has a dramatic impact
on the interpretation of the operations in a numerical atlgoar.

1.2 Standardvector operations

A few different types of operations can be performed on jhet¢oefficients for a set of vectors
which have the same meaning for the vectors themselveseHneghe set of classiectoropera-
tions of assignment to zero, vector scaling, and vectortistidivhich are stated as

9

e Xx=0:
X=EX=0= X=0

e Z=(0X

z=EZ=ax=aEX=E(aX) = Z=aX

e Z=X+YV:
z2=EZ=x4+y=EX+EJ=E(X+Y) = Z=X+Y.

Note that other types of element-wise operations on thdictmits like element-wise products
and divisions are not equivalent to the corresponding dipeion the vectors themselves and are
hence notvectoroperations.

1.3 Square, invertible basis representations

Up to this point, the vector spacgcan be a strict subspace @f sincem < n may be true. We
will now focus on the case whera = n which gives a nonsingular basis matkxe C"*" that can
be used to represent any vectoe C". As a result,E~! is well defined and can be used in our
expressions and derivations.

1.4 Definition of the scalar (or inner) product for a vector space

Now consider the dot inner product of any two vectang< C" which takes the well known form
n .
Xty = Zlconjugatém)yi- (4)
i=
Using the substitutior = EX andy = EY, the inner product in (4) can be represented as

Xy = (X"EM)(EY) =%"Qy, (5)

whereQ = E"E is a symmetric positive-definite matrix. It is this mat@xthat is said to define the
scalar (or inner) product of two coefficient vectar§ € § as

Xy =< % 9>s=%"Qy. (6)

1.5 Definition of the natural norm for a vector space
The natural nornj|.|| s of a vector space is defined as

X[= VXX = /< XX >5 = |[K]]s (7)
where< X, X > is defined in (6) in terms of the scalar product ma€ix

10

1.6 Orthonormal and orthogonal basis representations

Note that all orthonormal sets of basis vectors, i.e.

1 ifi=]
quJ—{Oifi?ej

result in anorthogonal matrix E that gives identity for the scalar product mat@x= ENE = I.
Therefore, all orthonormal sets of basis vectors resultineidean scalar product, even if the basis
vectors are not Cartesian (i@. # [o ... 1 ..0]). Also note that all orthogonal sets of
basis vectors give a scalar product ma@ix= EYE that is diagonal.

When the scalar product mati@xis diagonal, it is trivial to compute a diagonal scaling matr
Ql/2 and then use this scaling matrix to scale all vectors andatgesr before the numerical algo-
rithm even sees them. In these cases, it is questionabldaritéie more general concept of scalar
products is worth the effort in expressing and implementingnerical algorithms, which is our
ultimate goal here. Therefore, we are primarily focused mblems that require more than simply
diagonal scaling.

1.7 Equivalence of basis representations and the scalar pdact

One important detail to mention is that given a particulacteoe space$ with its corresponding
scalar product defined usin@in (6), there are infinitely many different selections foe thasisk
that give the same scalar product. To see thig; letC™" be any orthogonal matrix (i.&"F =1).
We can the use a particular choice foto transform the scalar product as

xly=x'Qy=%"(E'E)y=X"E"(F"F)Ey=%"(FE)"(FE)y= (K'E")(EY) =Xy (8)

wherex= EX, X= E%, andE = FE. We see thak € C"™*" actually forms a different vector space
S, but, for the same coefficient vectors, its scalar produekactly the same as fgr. Therefore,
when we define a vector space by its scalar product, we atg defining a whole collection of
vector spaces instead of just one. This is because therafarigely many different sets of basis
vectors that give infinitely many different vector represg¢ions for a particular set of coefficients
but all have the same scalar product.

1.8 Linear operators

A Euclidean linear operatgk € C"|C" is a object that maps vectors from the spateso C™ as

y=AX 9)

1In most linear algebra text books and literature, the terinogonal matrixs used to denote a matrix who's columns
are orthonormal. This means that a matrix with just orth@donlumns (i.ee{* €j = 07 1 wheni = j) is not an orthogonal
matrix. It would seem to make more sense that a matrix withogronal columns should be called an “orthogonal matrix”
and a matrix with orthonormal columns should be called athtwrormal matrix” but this is not the standard use.

11

wherex € C" andy € €™, and also obeys the linear properties
z=A(au+ Bv) = adAu+ BAv (10)

foralla, € Candu,v e C".

For every Euclidean linear operatérit is possible to define another linear operator object
associated with it called thadjoint Euclidean linear operator, denotéd < C"|C™, which maps
vectors from the spacé®™ to C" as

wherex € €™ andy € C".

For Euclidean linear operato#s the adjoint Euclidean linear operaif is equal to the matrix
element-wise conjugate transpose,At = (A)H where we use the notatiofd)" to denote the
matrix element-wise conjugate transpose.

There are also other forms of a linear operator that correspmdifferent basis representations
of the vectors. Given a particular vector basis representat= EX, we will also define another
form of a linear operator which we refer to as than-Euclidean coefficierform.

According to our notation, the Euclidean operator appliceis shown in (9). Thaon-Euclidean
coefficient linear operatoapplication is written as

y=AX (12)

wherexe D,y € R, andD gNCI:” and® C €M The Eu~clidearA and non-Euclidean coefficiet
linear operators are related As- E *AE;, andA = Eg AE,*. The relationship between these two
linear operators is explored in Section ?7??.

Dumb Fact 1.1 An adjoint linear operator is not the same as the matrix He¢iamitransposeA)"
when dealing with non-Euclidean vector spaces.

In other words, while the adjoint of the Euclidean linear rper A™ is equal to the Hermitian
transpose of the forward Euclidean operadotthis is not generally true for non-Euclidean linear
operators.

The forward and adjoint non-Euclidean coefficient lineaeraporsA and A", respectively, are
related to each other with respect to the scalar produatsigirthe adjoint relationship

(AW =< AT > 5= (AT Hu=< A"0,0 >, (13)

for all Ge D andv'e R. In (13) we see the relationship between a linear operasoadijoint, and
the scalar products associated with its range and domaaespa

12

A linear operator is refereed to awertibleif another unique linear operatér?! € D|R_exists
such that

AlA=pA 1=,

Likewise, theinverselinear operatoiA—! also has aradjoint inverselinear operatoA ¢ R |D
associated with it which satisfies

A HAR —aAHA-H |

While the adjoint of a non-Euclidean coefficient linear @er is not generally equal to the
Hermitian transpose of the forward linear operator, theisg does have the same relationship as
in the Euclidean case. In other words, the inverse of a nariid&an coefficient linear operatér*
is in fact equal to the matrix inverse of the forward non-Eiezn linear operatafd) 1. This will
be shown out in Section ???

Linear operators are used to represent a variety of diffegges of objects in a numerical
algorithm. Even vectors € C" can be viewed as linear operatars C"|C where the domain space
for the forward operator is simpl which gives the forward operatgr= xv (wherev € € and
y € C") and the adjoint operatgr= x"v (wherev € § andy € C). Here we see that a vectmior X
can take on a dual role. In one roleisjust an array of coefficients with a scalar product attdche
to it. In another role, it can represent a linear operatorrevtiiee action o'y invokes the scalar
product< X,y >.

1.9 Dealing only with scalar products and vector coefficierst in algorithm construc-
tion

It is important to recognize that both a vectoand its corresponding coefficient vectofwhere

x = EX) can be represented as arrays of scalars in a computer progrlowever, our goal is

to go about formulating and implementing numerical aldgons and applications so as to only
manipulate arrays of the natural coefficient vectoend never manipulate the coefficients of the
Euclidean representation of the vectarthemselves. The reason that one would only want to deal
with the natural coefficients of the vectors in a vector spauthe scalar product is that it may be
inconvenient and/or very expensive to build a set of basitove so that the Euclidean form of the
vectors themselves can be formed and manipulated dirddtig.is the case, for example, in many
different finite-element discretization methods for PDE?7].

13

2 Impact of non-Euclidean scalar products on matrix
representations of linear operators

As stated above, for every linear operaddhere is a correspondimpn-Euclidean coefficient linear
operatorA. In addition, every finite-dimensional linear operator has of several potential matrix
representationé. The different representations depend on how the domaimaarge spaces relate
to the matrix representation.

Here we consider the impact that non-Euclidean vector spand scalar products have on
Euclidean linear operatos € R | D, their non-Euclidean coefficient formfs and their different
possible matrix representatiov&s We consider two such matrix representations in the folgwi
two subsections, the “natrual” matrix representation dwed'Euclidean” matrix representation.

2.1 The “natural” matrix representation of a linear operator

First, lets consider the “natural” matrix representatﬁoof a linear operatoA in terms of the basis
vectors for the space® and® which takes the form

A=EgzAE}. (14)
Given this matrix form ofA, the non-Euclidean coefficient form of the linear operasor i

y = Eg¥y
AX

ol
m/—\
m
S
> >
©
X =
m
]
X

A = AQp (15)

whereQp = E';)E@ is the scalar product matrix for the spa€e Hence, we see that applying
the operatorA using (14) to transform the vector coefficiet$o™y involves injecting the scalar
product matrixQ, before multiplying by the “natural” coefficient matrix Using this notation, we
differentiate between the adjoint operator denoddand the Hermitian transpose of the forward
operator denote¢A)".

Now lets consider the definition of the adjoint using (14) ethis
vV = E@\7
= Alu
= (E0A"ER)(Ex0)
= Ep(A"Qgl)

14

At = Aoy (16)

whereQg = E;ER is the scalar product matrix for the spa&e This time, the application of the
adjoint requires the injection of the scalar product magix.

Here we see the definition of the adjoint non-Euclidean agiefit linear operatoA™ = AHQ,
is not equal to the Hermitian transpose of the forward nooliieian coefficient linear operator
(A = Q) AH. Here we now see the critical difference between a linearaspeand a matrix when
dealing with linear operators that operate on the vectoffic@nts of vectors with non-Euclidean
basis representations.

Dumb Fact 2.1 When writing algorithms in vector coefficient form with nGoelidean scalar
products, the adjoint non-Euclidean coefficient linear raper A" is not the same as the matrix
conjugate transpose of the forward non-Euclidean coefftciimear operatorA. In other words,
using our notationA" £ (A)H in general.

It is easy to show that (15) and (16) satisfy the adjoint ieteship (13) as

<AGV>z = (AQp)"Qg (V)
(

p O (17)

If the linear operatoA is invertible such thaf\~! exists, then the inverse non-Euclidean coeffi-
cient linear operatiodA 1 is given by

y = Epy
= A
= (ExAEp) '(ExX)
= E, A NEg'Eg)R
= (EpE,NEHA'R

Ep(Ex'E,MA K
= Ep(QurA hX
=
Al = QA (18)

Therefore, applying the inverse of the natural coefficiegresentation of linear operator to the
vector coefficients involves applying the inverse of thdacaroduct matri>Q;)1.

15

The adjoint inverse non-Euclidean coefficient linear opmera " < R |D is also easy to derive
and is given by

y = Egy
= A HMx
= (ExAER) M (EpX)

g AEp D

= E§HA*HE51EQX
= (ExExHEZ"A X
= ER(EiéEiﬁ)Ain
= Eg(QgATMY)
= Exq(Qg'A)X

AH = QAN (19)

Therefore, applying the adjoint inverse of the natural ficieht representation of linear operator to
the vector coefficients involves applying the inverse ofgbalar product matri@;il.

Here we see that the inverse non-Euclidean coefficient fuhaad adjoint linear operatofs
andAH, respectively, actually are to the simple matrix inverséthe non-Euclidean coefficient
forward and adjoint linear operatofsandA", respectively.

Dumb Fact 2.2 The inverse non-Euclidean coefficient linear operaiot actually is the same as
the matrix inverse of the forward non-Euclidean coefficlavgar operatorA. In other words, using
our notation,A~1 = (A)~L,

2.2 The “Euclidean” matrix representation of a linear operator

Now consider another matrix representation of a linear atpemwhere the forward operator appli-
cation (9) is implemented as

¥ =A% = A% (20)
wherex = EpX andy = Egy. This representation is quite common in many different soaied

makes good sense in many cases.

Given the matrix representation of the forward operatodiegion in (20) one can derive the
adjoint operator from the adjoint relationship as

<ALT>g = (ADHQg(V)

(a" A“)Qm)
= "(QoQ,HA"Q

16

= (0")Qn(Q,'A"Qx¥)
= <0,A" >,
=
A = QtA"Qg (21)

From (21) we can see that applying the adjoint in this caseires|that the inverse of the scalar
product matrixQ,," be applied.

From (20) or (21), one can derive the exact representatidheobperatoiA that is consistent
with this matrix representation.

First, from (20) we see that

y = Egy
Ex (A)
= EgA(E,'Ep)X
= (ExAE,Y)(EnR)
= AX
=
A = EgAE;} (22)

We can also derive the representatiorAdfom (21) as

y = Epy
= Ep(Qy'A"QgX)
= Ep(EpEp) A" (EREg)X
= Ep(E,'Ex"AY(EXER)R
= (EpEpY)(ELA"ER)(ExX)
= Alx
=
At = EMAMER
=
A = EzAE}} (23)

Note that we already know thétin (22) and (23) satisfies the adjoint relationship, sincB (#as
derived from the adjoint relationship.

Given the “Euclidean” form oA in (22), the action of the inverse linear operafor* (should it
exist) in the operatioy = A~x is given by

y = Epy

17

= Al

= (ExAELN H(ExX)
= EpA NEg'Eq)X
Ep(A1X)

4

% A%, (24)

Likewise, the action of the adjoint inverse linear oper#of of the formy = A~Hx s also easy
to derive and is given by

y = Eg¥

A-Hx

(ExAE,Y) " (EnX)

= E"ATMERELR
(ExEx"Ez"A M (EDEp)K
Ex(Qz"A"Qp%)

4

§ = QgATMQu% (25)

18

3 Impact of non-Euclidean scalar products on derivative
representations

Here we describe how to correctly compute and/or apply thieateve of a multi-variable (vector)
function so as to be consistent with the function’s domaith mmge spaces. We will see that these
issues are closely related to the discussion of differeritirr@presentations in Section 2.

Here, we will deal with real-valued vector spaces denotet Ri". The reason we do this is
that while derivatives for complex-valued functions ardlwlefined, their use in optimization and
other types of numerical algorithms can be a little trickyl dherefore we stick with real-valued
functions here to avoid trouble.

We now consider multi-variable scalar functions and mudtirable vector functions in the next
two subsections.

WARNING: In the derivative discussion below, the usage the spacéiomt# is incorrect and
should be replaced witli" in many cases and visa versa.

3.1 Derivatives of multi-variable scalar functions

Consider the Euclidean-vector, scalar-valued funcfior
xeR"— feR.

The definition of the first derivative of this function comesrh the first-order variation

of
of = &6)('

Therefore, the derivativeéf /ox first and foremost is a linear operator that when applied toeso
variation inx of dx gives the resulting variatiodf, to first order, in the functiori. For scalar-valued
functions, it is common to define tigeadientof the function which is defined asf = af /ox" ¢ R"
and is usually represented as a vector in the spatend this gives

5f = Of"dx.

Let the coefficients of the gradient vector be denotedl &such that1f = ECJf, whereE is the
basis for the spac¥.

Now consider an implementation of the functibfx) that takes in the coefficientsahd returns
f as

XeR"—geR.

where

19

The functiong is what would be directly implemented in a computer code imyneases. Since
£ = E~1x, we see that

of _9gox _dg_ 4

ox 0%ox 0%
which gives
Of =E~"Og. (26)

Equating (26) tdlf = ECf and performing some manipulation we see that

Of = EOf
= E "Og
=
Of = EE TOg
= (ETE)"'0g
= Q'Og (27)

whereQ = ETE. Therefore, to compute the coefficierits for the gradient vector!f given the
gradientg for the functiong(X), one must apply the inverse of the scalar product ma&rix as
shown in (27). Note that this results in the inner product

OfTax = (OF)TQ(8x) = (Q *0g) " Q(dx) = Ug' (Q*Q)dx = [g' dx

which is nothing more than the simple dot product involvimgags of data that are directly stored
and manipulated in the computer. This is the first case thatvillesee of ascaling invariant
computation where the gradient’s scalar product valuedspendent of the choice of the basis. In
this case, it would be more efficient to implement the gradief as a linear operatdif ' = of /ox
instead of as a vector in order to avoid having to apply thers®Q ! just to remove its effect later
usingQ in the scalar product. The vector form of the gradieritc X, however, is critical in many
types of numerical algorithms since it gets assigned toratbetor objects and gets passed to linear
operators (i.e. it becomes the right-hand side for a lingstes).

Note that representatidfif’ = df /0x as a linear operator stored ag' = 0g/0X is equivalent
to the “Euclidean” form of the linear operator described gctn 2.2 where the range space is
simply ® = R, However, the vector representatiorf = ECf, where[lf = Q10g, is equivalent
to the “natural” matrix representation of the linear operéif € X|R.

ToDo: Derive and describe the impact of the scalar product on ttesiee matrix forf (x). | do
not know what this is exactly but | need to derive this so thzdr determine that the Newton step
for the minimization algorithm is not effected! In think thiessian operator i§2f = Q~1[12gQ 1
but In need to verify this for sure.

20

3.2 Derivatives of multi-variable vector functions

We now consider the extension of the above discussion ofisealued functions to vector-valued
function f (x) of the form

XxeX—fef.
Again, many different algorithms consider the first-ordariation

of
of = &6x.

In this notationd f /dx is a linear operator that maps vectors frére X to 6f € F.

_ The vectors take the form= Ex%, f = Eg f, 3x = Exdx andf = E3f wherex; f, 3, and
of are the coefficient vectors that would typically be direstigred and manipulated in a computer
program.

Now consider the case where functidiix) is implemented in coefficient form through the
function

XeR"—-geR™
where

f(x) = E#g(X).

The functiong(X) is what would typically be implemented in a computer code @gydX could be
efficiently and simply computed using automatic differatitin (AD) [??7?] for example. The full
forward linear operator would then be

of _ 0goX _ 0g9_ ;
o~ arax 7 ot)
which takes the same form as the “Euclidean” representafitime linear operator described in Sec-
tion 2.2. This operatoA = 0f /0x can either be formed and stored using some matrix repregenta
or can be applied implicitly.

One has two choices how to actually implement the operatop f /0x using a matrix represen-
tation. The first option is to just explicitly store the matdig/oX that would be directly computed
from the functiong(X) using AD for instance. The forward operation applicatios: (0 /0x)x
would then be applied in coefficient form as

<
Il
Q)| D
xXulQ
X

21

This “Euclidean” form, however, would then require that #tgoint be implemented as

of T 8 09"
y=5. x = §=Qr 1 QR (29)

as shown in (21), which requires the application of the iseesf the scalar product matr@, —*
with each application of the adjoint.

The other option for a matrix representation is to computésaoreA = (0g/0%)Qx ! and this
gives the “natural” representation

of _ ag_ 5
3% = Er5eEx' =E7

%
o

0g__1

D (e TED) =/ 2 (ETE) €] = EsAEY 0)

Note that forming the produ¢fg,/a%)Qx ! may be very expensive to do in practice and can destroy
the sparsity obg/0X. Note that this is equivalent to the vector representation bdescribed in
Section 3.1.

22

4 Impact of non-Euclidean scalar products on various numeircal
algorithms

Here we discuss the bread and butter of the impact of scaddupts in how they affect numerical
algorithms that we develop and implement. The approachthkee is to first start with the algo-
rithms stated in Euclidean form without regard to issuescafas products. This is fine as long as
we recognize that the vectorsfor instance, that we are dealing with will eventually be sitbted
for there basis and coefficient form= EX from which we do manipulations. What we will try to do
is to see how the expressions in the algorithm change and Iveywto perform the manipulations
so that we are left with the only the vector coefficients f)escalar product matrices (i.€©.¢), and
linear operators. We will also try to remove any explicit degence on the exact form of the basis
representation (i.e. the bagts should not appear in any final form of the coefficient expiass).

The general approach is summarized as:

1. State the algorithm in Euclidean form using vectors wépect to a Euclidean basis (ex).
with simple dot products (e.gy) etc.

2. Substitute the basis representations for all vectogs Xe- EX) in all expressions.

3. Manipulate the expressions and try to decompose all bpesanto coefficient form involv-
ing only the vector coefficients (e.g), Scalar product matrices (e.@.), and other model-
defined linear operators if needed.

To demonstrate the process, consider the Euclidean forheahher CG iteration

H

pk = 1T,
Pk
= r+— X
P Pk—lp
q = Ap
Pk
o0 = —,
pq
X = X+ap,
r = r—aq.

In this algorithm, the linear operatér € $|S is symmetric so we are dealing with just one vector
spaceS with scalar producQ. Let E ¢ C™" be any basis representation such t@at EME.
Substitutingr = Ef, p= Ep, g= E§, andx = EXin the above inner loop expressions yields

pk = FTE"EF,
Ep — Ef+-P<Ep,
Pr-1
EG = (EAEMEp,
_ Pk
=~ PEVEG

EX = EX+oEp,

23

=
pc = FQF,
Ep = E(f+-2p),
Pk—1
EG = E(Ap),
Pk
O = —,
pHQg
EX = E(X+ap),
EF = E(F—ad),
=
Pk = <F>~>>
p =+ 2p
. k—1
4 = AR
a = P
<p,g>
X = %+ap,
F = F—ad.

As seen in the above example, if after this transformatiorcaremanipulate the expressions such
that the coefficient forms do not explicitly involve the tssnatrixE but instead only involve the
scalar product matri = EME and the non-Euclidean coefficient forms of the linear opesathen
we have succeeded in deriving a general form of the algoritianwill work for all non-Euclidean
vector spaces.

It is critical to note that when the selection of the scalardpicts affects an algorithm then a
good selection for the scalar products can positively ihffge performance of the algorithm. The
dramatic improvement in the performance of various nunaggtgorithms that is possible with the
proper selection of scalar products is documented in [?R@][2?7]. Many numerical algorithms
applied to applications that are based on discretizatibR®&Ss can show mesh-independent scaling
when using the proper scalar products for instance [??7?].

4.1 Newton methods

The first set of methods that we will consider are Newton nagH87?7?]. In their most basic form,
a Newton method seeks to solve a set of multi-variable nealirquations

f(x)=0

24

wherex € R™ and
xeR"— feR"

is a vector function of the form described in Section 3.2 whex) = E;g(X) andg(X) is what is
implemented in the computer. The undamped Newton methdd seémprove the estimate of the
solutionxk by solving the linear system

of
3= 0% (1)

and then update the estimate using

Xer1 = X+ d. (32)

It can be shown than wheg is sufficiently close to a solutiox® such thatf (x*) = 0, and ifd f /ox
is nonsingular, then the iterat®g X, ..., Xk, Xk.1 converge quadratically with

X2 =X || < Clfxc— x| 12

for some constar€ € R. In a real Newton method, some type of modification is geheegdplied
to the step computation in (31) and/or the update in (32)deoto insure convergence from remote
starting points<.

We now consider the impact that non-Euclidean basis reptasens and scalar products have
on two forms of the Newton step computation: exact and inexac

4.1.1 Exact Newton methods

In an exact Newton method, the Newton system in (31) is solweal high precision. Now let’s
consider the impact that substituting non-Euclidean bragigesentation has on the Newton method.
The basis representations are ExXand f = Efffor the spacest € R"and ¥ € R". Now, let

us assume the “Euclidean” representationdfbfdx which gives the coefficient form of (31) as

—~d= -0 (33)

We then substitutd into the update in (32) which is
ferr =K+ d. (34)

Comparing (31)—(32) with (33)—(34), it is clear that the ickeoof the basis functions for the spaces
X or F has no impact on the Newton steps that are generatedinvaisanceproperty of Newton’s
method is one of its greatest strengths. However, solvieg\tewton system exactly can be very
expensive and taking full steps can cause the algorithmvergik and modifications to handle these
issues are considered later. First, however, the inexacpuatation of the Newton step is discussed
in the next subsection.

25

4.1.2 Inexact Newton methods

In an inexact Newton method, the linear system in (31) is nbtesl exactly, but instead is only
solved to a tolerance of

of
H&dJrkaff

<n (35)
|| ficl| 7

wheren € R is known as the forcing term and typically is selected suelrii] || f|| # in order to
ensure quadratic convergence. The coefficient repregantzit(35) takes the form

a9~ \' . [0g:
(ﬁd +9k> Qs <&d +gk>

<n? 36
70 o <n (36)

From (36) we see that the selection of the scalar producixr@iy that defines the normi.||# (as
defined in (7)) can have a large impact on the newton step catigu. However, assuming the
“Euclidean” form of the forward operator is used as in (3Bgrt the selection of the scalar product
for the spaceX has no impact on the computed Newton step. Such a computssaid to beaffine
invariant [??7?].

4.2 Minimization, merit functions and globalization methods
Let’s consider the minimization of a multi-variable scaianction
min f(x) (37)

where f(x) of the form described in Section 3.1 wheféx) = g(X) andg(X) is what is actually
implemented in a computer program.

As stated in Section 3.1, the coefficient vector for the gratlil f, which takes the fornil f =
Qx10g, is affected by the definition of the bagts but the scalar product

Of7d = (Qx '0g)" Qx(d) = Og' (d) (38)

is not affected, wherd = Exd~e X is some search direction.

One of the most basic requirements for many minimizatiooriigms is the descent require-
ment which can be stated as

OfTd <0 (39)
for Of £ 0.

26

Consider the steepest-descent directlea—yd f wherey > 0 is some constant. With a Euclid-
ean basis, the coefficient vector for this direction takesftdrm d = —yg. However, when a
non-Euclidean basis is used, the coefficient vector forlbesteepest-descent direction is

d=-yQx 'Og.

Therefore, the choice of the scalar product can have a di@inapact on the steepest-descent
direction. The descent property for the steepest-desderttion then becomes

0fTd = (0g"Qx 4)Qx(—yQx '0g) = —yUg' Qx 'Ug < 0.
for [0g # 0. Therefore, the descent property for the steepest-desittion is changed even

though the scalar product definition itself is not.

Another selection for the step direction takes the forea —B~10f whereB is some approx-
imation for the Hessian of (x). Sincellf changes with a non-Euclidean basis, so will this search
direction. The choice dB for variable metric methods will be addressed in Section 4.4

Descent alone is not sufficient to guarantee convergencgedd, more stringent conditions
must be met. One such set of conditions include a sufficiezredse condition

f(xc+ad) < f+ca(Of)Td (40)
(often know as thé\rmijo conditior), and a curvature condition
(Of (x+ad))"d < c(Ofy)"d (41)

where 0< ¢; < ¢z < 1. Together, (40)—(41) are known as thelfe conditiong??7?].
Now let's consider the coefficient form of the conditions 40)—(41) for non-Euclidean basis’
which from (38) become
9(R+ad) < ge+cro(Og) 'd (42)
and

(09(%+ad))Td < cp(Ogy) " d. (43)

Itis clear from (42)—(43) that even through the selectiothefscalar product defined 16y affects

the steepest-descent direction, for instance, it does ctablly affect the Wolf conditions for a
general directiord. The computation of the directioth can, however, be impact by the choice of
the scalar product as described above. What this meang ihéh@/olfe conditions are invariant to
the selection of the basis for the spatdut the search direction. Again, invariance with respect to
the selection of the basis is consider a very attractivegatggor numerical algorithms.

27

4.3 Least-squares merit functions

Here we consider the impact that non-Euclidean scalar jgtediave on standard least-square merit
functions of the form

m(x) = f(x)" f(x) (44)

wheref (x) is a multi-variable vector-valued function of the form deélsed in Section 3.2 which is
implemented in terms aj(X) where f(x) = E+g(X). The least-squares function defined in (44) is
used in a variety of contexts from globalization methodsrfonlinear equation$(x) = 0 [???] to
data fitting optimization methods [?77].

The gradienfm € X of m(x) defined in (44) is given by

T
_ of ¢

Im= —
max

(45)

Whenof /ox s represented in “Euclidean” form as shown in (28), the fideht form of the adjoint
Jacobian-vector product in (45), shown in (29), is given by

T 7lagT
Um= Qx o% Q9. (46)

In (46) we see that the gradient direction for the least-sgpienerit function in (44) is impacted by
both the scalar product matric€s andQ..

4.4 Variable metric quasi-Newton methods

Non-Euclidean scalar products can dramatically improeepgrformance of optimization methods
that use variable-metric quasi-Newton methods [???]. Merawill consider a popular form of
variable-metric approximation called the BFGS formula?|A®hich is defined as

. (BIBYT W
B+ =B~ "FBs "yTs

whereB is the current approximation to the Hessiahf andB.. is the updated approximation.

Generally, the update vectors are definegt asl1f, — [Ifx_1 ands= xx — xx_1 but the analysis
here is independent of the actual choices for these vectWisat will be made clear here is the
impact that the non-Euclidean scalar products have on theugimplementations of this method.

We will consider two forms of the above approximation. Finse consider an explicit im-
plementation that directly stores the coefficients of thdrixan the “natural” form. Second, we
consider an implicit implementation that only stores pairspdate vectors and applies the inverse
implicitly. The implicit representation then leads natlyréo a limited-memory implementation.

28

4.4.1 Explicit BFGS matrix representation

For the explicit matrix representation we will assume andB . are being stored in the “natural”
coefficient forms ofB = EBET andB, = EB,E". Note that the basis matri is generally not
given explicitly and a unique choice is not known; only tha@lac product matrixQ = E'E is
known. By substituting in the coefficient forms Bf= EBE', B, = EB.ET, y= EY, ands= E§
into (4.4) and performing some manipulation we obtain

: _ eper_ [(EBET)(E9)|[(EBET)(ES)T | (EY)(EY)"

ES.ET — EBET- (E3)T (EBET)(E9) (E9)T(E9)
_ EéET_E(BQé)(BAQé)TET E¥'E'
FQ(BQY) 71 Qs

(BB '
§TQ(BQY ¥'QS
5 . (BQY)BY'T W'

B, = B- ToB0s | 7os (47)

E|B— ET

What (47) shows is that the “natural” matrix representatibB can be updated tB, by using the
coefficients of the vectorsandy the matrix coefficient themselves, and the action of the scalar
product matrixQ. Note that the final expressions for the update do not conit@rbasis matrie
itself since this matrix is not known in general. Also notattfi= BQSis just the coefficient vector
from the output of the action af = Bsand the remaining operations involvi@which ares’ Qg
ands’ Qg are simply applications of the scalar produets, q > and< y,y > and therefore no direct
access the th® operator is needed here. However, note that applying thieirald representation
of B does require the ability appl® as a linear operator and not just a scalar product.

What all this means is that code that currently implementsxguiicit BFGS update assuming
for a Euclidean basis should only need minor modificationsriter to work correctly for non-
Euclidean scalar products.

Note that applying the inverse Bf= EBET for v= B~ luis simply a special case of (19) and is
given as

v = EV
= B lu
= (EBE")"Y(EQ)
- E(Q'B'0)
=
v = QB (48)

Therefore, applying the inverse of the natural coefficiepresentation oB involves applying the
inverse of the scalar product mat@x ..

29

4.4.2 Implicit BFGS matrix representation

For the implicit representation of a BFGS approximation wikeonsider the approximation of the
inverseH = B~! and the update = H;ly using the update vectossandy which is given by the
formula

H, =VTHV +pss (49)
where
1
p = yTS, (50)
V = |—pys. (51)
(52)

Here we consider a so-called limited-memory implementaf{loBFGS) wherem sets of update
quantities{s,yi, pi } are stored for the iterations= k—1,k— 2, ..., k—mwhich are used to update
from the initial matrix inverse approximatiddy = B, ! to giveH after themupdates (see [??7?] for
details). The implementation of the inverse Hessian-ygamtoductv = Hu is provided by a simple
two-loop algorithm involving only simple vector operatglike dot products, vector scalings, vector
additions, and the application of the linear operadgr Therefore, we will go and skip ahead and
write the general non-Euclidean coefficient form of thisoaidnm. This simple algorithm is called
the two-loop recursion [??7?] which is stated as

L-BFGS two-loop recursion for computing ¥ = H(i

g=ad

fori=k—1,...,k—m
ai=pi <§,>
G=4q—aiyi

end

7 = Hod

fori=k—-m,...,k—1
B=pi <Vi,f>
F=F+ (o~ P)S

end

V="F

While it is subtle, the insertion of the general scalar potsly §,§ > and < ¥, > can result
in a dramatic improvement in the performance of minimizatimethods that use it and it has been
shown to have mesh-independent convergence propertesh@ number of iterations does not
increase as the mesh is refined) for some classes of PDEaioest optimization problems [?7?7].

30

4.5 Inequality constraints
Consider a simple set of bound inequality constraints ofdim
a<x (53)

wherex;a € § with basis representations= EX anda = E&. Inequality constraints of this form
present a difficult problem for numerical algorithms usimgp+Euclidean basis matricéssince the
inequality constraint in (53) is really a set of elementevi®nstraints

a <x,fori=1...n. (54)

The element-wise nature of (54) means that we can not simgigtisute the coefficient vector
components;andd; in for x; anda;. One could, however, simply substitute in the coefficiemttor
components and have the algorithm enforce

& <%, fori=1...n, (55)

but then that may fundamentally change the meaning of thesstraints and may destroy the phys-
ical utility of these constraints for the application. Adtigh, note that in some types of applications
this type of substitution may be very reasonable. For examipistandard finite-element discretiza-
tions of PDESs, the vector coefficients directly correspangiysical quantities such as temperature,
stress, and velocity at the mesh nodes. Therefore bounidasg types of coefficients may be very
reasonable even through a non-Euclidean scalar produ@sisatile in order to introduce mesh-
dependent scaling into other parts of the algorithm. Inmotyyges of discretizations, such as those
that use a spectral basis, there is no physical meaning tooiféicients so inequalities involving
these are meaningless. Note that imposing the inequalitgtcnts in non-Euclidean coefficient
form as in (55) is equivalent to imposing the inequalitiegurclidean form as

E-la<Ex (56)

which is important when performing the initial transformoat from the Euclidean form (i.e. using
dot products<y) to the non-Euclidean coefficient form (i.e. using scaladpicts< X, >). Here,
we hope that in doing the transformation of the entire atborithat we can remove any explicit
mention of the basis matrik itself.

In cases where component-wise inequalities on vector caifs is not useful, one has no
choice but to form an explicit basis and to pose these contdras general linear inequality con-
straints of the form

b<EX,

whereb = E4. Even if an explicit basis must be formed in order to presd¢ingemeaning of the
inequality constraints, there is still utility in exprasgian algorithm in general non-Euclidean coef-
ficient form since it avoids having to convert all vectorskand forth using the basis representation
or having to invert the basis matrix.

31

Therefore, if it is reasonable to impose inequality corstsaon the coefficient vectors them-
selves, then ANAs involving inequalities with non-Euckatescalar products can be very reason-
able and straightforward to implement. When replacing theliiean inequalities with the vector
coefficients is not reasonable, then the an explicit bagieesentation is required to express the
constraints.

32

5 Vector Coefficient Forms of Numerical Algorithms

Here we finally come to reality. Up to this point in the disdasswe have been very careful to
differentiate the vectoxr from the vector coefficients related by the equatior = EX. We have
viewed algorithms in Euclidean form using the vectw@andy and simple Euclidean dot products
xHy and then in non-Euclidean coefficient form using coefficigdtorsxandy'and scalar products

< X,y >. When mathematicians write numerical algorithms in coiefficform, however, they do
not typically use math accents likeahd A or acknowledge the related Euclidean forms. Instead,
they use non-accented identifiers and often the only cluewikaare dealing with non-Euclidean
vectors, vector spaces, and linear operators expresseagtiorcoefficient form is that simple dot
products likext'y are replaced with< x,y >. As we have show above, expressing algorithms in
vector coefficient form with non-Euclidean scalar produas a dramatic impact on the definition
linear operators, derivative computations, and the mearfioertain types constructs line inequality
constraints. For example, we showed in Section ??? thatljbmtnon-Euclidean coefficient linear
operatorA™ is not the same thing as the matrix conjugate transpose déthard non-Euclidean
coefficient linear operatoh.

Dumb Fact 5.1 When most mathematicians write a numerical algorithm usiiregscalar product
notation< x,y >, the vectors x and y are the coefficients of the vectors araf ik linear operators
become non-Euclidean coefficient operators whichrenteequivalent to matrices in general!

However, using the approach outlined above, one can coablgrgo between the Euclidean
dot product form (i.ex"y) and the non-Euclidean scalar product form (kex,y >).

33

6 Summary

Here we have presented an approach to looking at non-Eaalidealar product spaces that deals
in very straightforward terms using simple concepts ofdinglgebra. The idea is to first look at all
algorithms assuming Euclidean vector spaces and explicitidean coefficient vectors and then to
substitute in the basis representation for non-Euclidesotov spaces. After this substitution, one
then tries to manipulate the expressions to come up withdhdihg blocks of scalar products and
linear operators and only considers the explicit repregiemt and manipulation of the coefficient
vectors and never the Euclidean coefficients of the vechaimselves.

34

7 ToDo

e To make this type of discussion more helpful, it would be ichave a concrete application
and numerical algorithm example to work through to show thpact of all of this. This
could, in fact, make a nice journal paper to show off Thyraoifie well.

35

References

36

v1.27

@ Sandia National Laboratories

